Prolactin is not a juvenile hormone in Xenopus laevis metamorphosis.
نویسندگان
چکیده
Prolactin (PRL) is widely considered to be the juvenile hormone of anuran tadpoles and to counteract the effects of thyroid hormone (TH), the hormone that controls amphibian metamorphosis. This putative function was concluded mainly from experiments in which mammalian PRL was injected into tadpoles or added to cultured tadpole tissues. In this study, we show that overexpression of ovine or Xenopus laevis PRL in transgenic X. laevis does not prolong tadpole life, establishing that PRL does not play a role in the life cycle of amphibians that is equivalent to that of juvenile hormone in insect metamorphosis. However, overexpression of PRL produces tailed frogs by reversing specifically some but not all of the programs of tail resorption and stimulating growth of fibroblasts in the tail. Whereas TH induces muscle resorption in tails of these transgenics, the tail fibroblasts continue to proliferate resulting in a fibrotic tail that is resistant to TH.
منابع مشابه
A developmental switch induced by thyroid hormone: Xenopus laevis metamorphosis.
Thyroid hormone induces the complete metamorphosis of anuran tadpoles into juvenile frogs. Arguably, anuran metamorphosis is the most dramatic effect of a hormone in any vertebrate. Recent advances in pharmacology and molecular biology have made the study of this remarkable process in the frog Xenopus laevis attractive to developmental biologists and endocrinologists alike. In particular, the a...
متن کاملThe mouse muscle creatine kinase promoter faithfully drives reporter gene expression in transgenic Xenopus laevis.
Developing Xenopus laevis experience two periods of muscle differentiation, once during embryogenesis and again at metamorphosis. During metamorphosis, thyroid hormone induces both muscle growth in the limbs and muscle death in the tail. In mammals, the muscle creatine kinase (MCK) gene is activated during the differentiation from myoblasts to myocytes and has served as both a marker for muscle...
متن کاملDevelopmental expression and hormonal regulation of glucocorticoid and thyroid hormone receptors during metamorphosis in Xenopus laevis.
Corticosteroids, the primary circulating vertebrate stress hormones, are known to potentiate the actions of thyroid hormone in amphibian metamorphosis. Environmental modulation of the production of stress hormones may be one way that tadpoles respond to variation in their larval habitat, and thus control the timing of metamorphosis. Thyroid hormone and corticosteroids act through structurally s...
متن کاملAutoinduction of nuclear hormone receptors during metamorphosis and its significance.
Metamorphosis is a most dramatic example of hormonally regulated genetic reprogramming during postembryonic development. The initiation and sustenance of the process are under the control of ecdysteroids in invertebrates and thyroid hormone, 3,3', 5-triiodothyronine, in oviparous vertebrates. Their actions are inhibited or potentiated by other endogenous or exogenous hormones - juvenile hormone...
متن کاملProgramming neuroendocrine stress axis activity by exposure to glucocorticoids during postembryonic development of the frog, Xenopus laevis.
Exposure to elevated glucocorticoids during early mammalian development can have profound, long-term consequences for health and disease. However, it is not known whether such actions occur in nonmammalian species, and if they do, whether the molecular physiological mechanisms are evolutionarily conserved. We investigated the effects of dietary restriction, which elevates endogenous corticoster...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 1 شماره
صفحات -
تاریخ انتشار 2000